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Abstract 
Twitter has been identified as one of the most popular and promising altmetrics data sources, as it possibly reflects 

a broader use of research articles by the general public. Several factors, such as document age, scientific discipline, 

number of authors and document type, have been shown to affect the number of tweets received by scientific 

documents. The particular meaning of tweets mentioning scholarly papers is, however, not entirely understood 

and their validity as impact indicators debatable. This study contributes to the understanding of factors influencing 

Twitter popularity of medical papers investigating differences between medical study types. 162,830 documents 

indexed in Embase to a medical study type have been analysed for the study type specific tweet frequency. Meta-

analyses, systematic reviews and clinical trials were found to be tweeted substantially more frequently than other 

study types, while all basic research received less attention than the average. The findings correspond well with 

clinical evidence hierarchies. It is suggested that interest from laymen and patients may be a factor in the observed 

effects. 

Conference Topic 
Altmetrics 

Introduction 

In the context of altmetrics, defined as “the study and use of scholarly impact measures based 

on activity in online tools and environments” (Priem, 2014, p. 266), Twitter has been identified 

as one of the most interesting and widely-used data sources (Costas, Zahedi, & Wouters, 2014; 

Thelwall, Haustein, Larivière, & Sugimoto, 2013). Although restricted by brevity—a tweet is 

limited to 140 characters—Twitter is at the heart of the altmetrics idea to enable a broader scope 

for impact assessment beyond citation impact. As Twitter is used widely and particularly 

outside of academia by currently 284 million monthly active users1, tweets mentioning 

scientific papers are hoped to capture use by the general public and thus societal impact. Initially 

suggested as predictors of future citations and thus early indicators of scientific impact 

(Eysenbach, 2011), more recent large-scale empirical studies suggest that tweets are more likely 

to reflect online visibility including some social and scientific impact but also self-promotion 

and buzz (Costas et al., 2014; Haustein, Larivière, Thelwall, Amyot, & Peters, 2014; Haustein, 

Peters, Sugimoto, Thelwall, & Larivière, 2014). The most tweeted documents seem to attract a 

lot of online attention rather due to humorous or curious topics than their scientific 

contributions, often fitting “the usual trilogy of sex, drugs, and rock and roll” (Neylon, 2014, 

para. 6).  

 

Various, mostly quantitative, studies have shown, with respect to scientific papers, that—after 

the reference manager Mendeley—Twitter is the altmetrics data source with the second-largest 

prevalence and it is constantly increasing to currently more than one fifth of 2012 papers being 

tweeted (Haustein, Costas, & Larivière, 2015). Correlation studies provide evidence that tweets 

and citations measure different things (for example, Costas et al., 2014; Haustein, Larivière, et 

                                                 
1 https://about.twitter.com/company 



al., 2014; Haustein, Peters, et al., 2014; Priem, Piwowar, & Hemminger, 2012; Thelwall et al., 

2013; Zahedi, Costas, & Wouters, 2014). The latest research shows that Spearman correlations 

with citations for 2012 papers in Web of Science are low at ρ=0.194 for all 1.3 million papers 

and ρ=0.148 excluding untweeted papers. Beyond the particular differences of Twitter coverage 

and density between scientific disciplines, research fields and journals reported by various 

studies (Costas et al., 2014; Haustein, Larivière, et al., 2014; Haustein, Peters, et al., 2014; 

Zahedi et al., 2014), Haustein et al. (2015) also identified large variations between document 

types deviating from patterns known for citations. For example, news items and editorial 

material, which are usually considered non-citable items (Martyn & Gilchrist, 1968), are the 

most popular types of journal publications on Twitter, showing a tendency of increasing Twitter 

impact for brief and condensed document types. A study based on a random sample of 270 

tweets to scientific papers found that the majority of tweets contained either the paper title or a 

summary, did not attribute authorship and had a neutral sentiment, while 7% were self-citations 

(Thelwall, Tsou, Weingart, Holmberg, & Haustein, 2013). Other findings suggest that 

automated diffusion of article links on Twitter plays a role as well (Haustein, Bowman, et al., 

2015). 

 

Although these findings provide more evidence that the mechanisms behind tweeting a paper 

are different from those citing it, the meaning of tweets to scientific papers as well as the role 

of Twitter in scholarly communication are still unclear, not in the least due to the difficulty to 

identify ‘tweeter motivations’ based on 140 characters. This study aims to contribute to a better 

understanding of tweets as impact metrics by analysing the type of content that is distributed 

on Twitter. We propose that certain types of articles appeal more to the public than others, for 

example, because of their potential impact on health issues and everyday life or due to the fact 

that they are written in a certain way. Previous research has suggested that certain medical study 

types have a larger citation potential than others (Andersen & Schneider, 2011; Kjaergard & 

Gluud, 2002; Patsopoulos, Analatos, & Ioannidis, 2005), likely because they are more useful 

to the research community. In the context of Twitter, medical papers are of particular interest, 

because, on the one hand, these are particularly relevant to general Twitter users—as opposed 

to, for example, physics research—and practicing physicians belong to early adopters of social 

media in their work practice (Berger, 2009). In a survey asking researchers about social media 

use in research, the uptake by health scientists was, however, slightly below average (Rowlands, 

Nicholas, Russell, Canty, & Watkinson, 2011).  

 

The aim of this paper is thus to investigate whether there is a connection between different 

medical study types and the frequency of tweets per article. We hypothesize that some study 

types are more popular on Twitter due to their attractiveness for a broader audience such as 

applied medical research relevant to patients as well as meta-analyses summarizing research 

and condensing results. We will approach this hypothesis by first investigating the potential 

differences in tweet frequency for a range of medical study types. We argue that logically there 

should be a connection between the clinical evidence hierarchy (further explained below) and 

the types of studies patients might consider interesting to discuss or spread on social media, as 

the highest evidence levels are those which are most likely to affect clinical practice. We 

therefore expect differences in tweet frequency to be related to evidence levels. 

Materials and Methods 

Comparing the impact of medical research study types on Twitter requires two pieces of 

information per research article: a classification of the study type as well as the number of 

tweets received by each particular paper. Currently no database contains both pieces of 

information, so that it was necessary to combine data from different sources. For this purpose, 



the medical study type classifications from the Embase bibliographical database was used, 

enriched with metadata from PubMed and Web of Science and then matched to Twitter data 

from Altmetric.com. The datasets and the matching approach are described in further detail 

below. Following these descriptions is an account of the specific measurements and statistical 

tools employed as well as the limitations of this study. 

Data collection and matching 

Due to Twitter’s 140 character limitation, mentions of a scientific paper in tweets are restricted 

to links to the publisher’s homepage or unique document identifiers such as the Digitial Object 

Identifier (DOI) or PubMed ID (PMID). As Twitter only provides access to the most recent 

tweets2, it is necessary to constantly query various article identifiers to obtain a database of 

tweets to scientific papers. Altmetric LLP has been collecting tweets based on multiple 

document identifiers including the DOI, PMID and the publisher’s URL since July 2011 and 

thus provides a valuable data source for the purposes of our study. To assure reliable and 

complete Twitter data, we focus our study on papers published 2012. In order to link all tweets 

to the bibliographic data and study type classification from Embase, the DOI and the PMID are 

needed.  

 

The study type classifications (see below) for the analysis were retrieved from the Embase 

bibliographical database. Embase is a major database containing more bibliographical records 

than PubMed Medline; for example, 24%3 more for documents published in 2012. It is unclear 

whether the study type classifications of either database outperforms the other, however, as the 

indexing of Embase is more exhaustive, we have chosen to use this database for our study. In 

order to identify relevant papers from Embase (and to be able to perform a citation analysis in 

the future), Clinical Medicine journals were selected from the Web of Science (WoS) based on 

the National Science Foundation (NSF) journal classification system. The Web of Science also 

provides bibliographic data and DOIs for the relevant papers which were used to match Embase 

study types and tweets from Altmetric. 

 

Embase was queried for the relevant journals using the journal name and various abbreviations 

as well as the ISSN. Limiting the results to papers published in 2012, the metadata of 593,974 

records was retrieved from Embase. In order to obtain the PMID needed to match tweets, 

PubMed was queried in the same way resulting in 497,619 records. Embase, PubMed and Web 

of Science were matched using the DOI, PubMed as well as string matches of bibliographic 

information resulting in 238,560 documents in the final dataset, 94.9% of which with a PMID 

and 91.1% with a DOI. 

 

The bibliographic metadata was matched to the Altmetric database using the DOI and PMID 

resulting in 80,116 records with at least one social media event as captured by Altmetric and 

74,060 with at least one tweet at the time of data collection in August 2014. This amounts to 

31% of the 238,560 being mentioned on Twitter at least once, which corresponds almost exactly 

to the Twitter coverage of biomedical & health sciences papers found by Haustein, Costas and 

Larivière (2015). To ensure comparability between tweets published in January and December 

2012, we fixed the tweeting window to 18 months (546 days) for each of the tweeted 

documents, including tweets until 30 June 2013 for papers published on 1 January 2012 and 

until 30 June 2014 for papers published on 31 December 2012. The day of publication is based 

                                                 
2 Twitter’s REST API is limited to tweets from the previous week, while the Streaming API provides realtime data 

only. 
3 For the publication year 2012, Embase contains 1,334,356 records (search: “2012”.yr) and PubMed Medline 

contains 1,072,384 (search: 2012[pdat]). 



on the publication date provided by Altmetric. As this date is not available for all records and 

is sometimes incorrect, the dataset was further reduced to 52,911 documents, which had an 

Altmetric publication date in 2012 and not received a tweet before the publication date. 

Although these steps lead to an underestimate of the percentage of tweeted papers, they help to 

reduce biases induced by publication age when comparing the visibility of different medical 

study types on Twitter. 

Medical study type classification 

Embase indexes all articles using a controlled vocabulary (the Emtree thesaurus), which 

contains hierarchically ordered keywords in a classical thesaurus structure. Among these 

keywords are study type classifications, of which some are directly identifiable as such (e.g. 

randomised controlled trials), while others require some translation (e.g. “sensitivity and 

specificity” which is used for diagnostic accuracy studies). The Emtree thesaurus is designed 

for indexing and retrieval, and there is thus not a given connection between the hierarchical 

ordering of study type keywords and different levels of research methodology. This is 

particularly important, as one of the predominant approaches to Western medical research and 

practice is the so-called evidence based medicine (EBM). One of the cornerstones of EBM is 

the distinction between study types and their hierarchical ordering based on how much 

‘evidence’ a study is assumed to contribute to the understanding of a given problem 

(Greenhalgh, 2010). Different hierarchies exist, e.g. the Oxford Centre for Evidence Based 

Medicine’s “Levels of Evidence” (OCEBM Levels of Evidence Working Group, 2011).  

 

Table 1. Medical study type classification system based on Röhrig et al (2009) and OECBM. 

Classifications with raised numerals have narrower terms which are not shown here. 

 
 

We have chosen to use a particular hierarchy which allows a classification of study types on 

their level of research (Röhrig et al., 2009). We have added to the classification of Röhrig et al. 

(2009) by adding classification codes and the corresponding keywords in Emtree. The resulting 

system has been validated by two field-experts, and is displayed in Table 1. As can be seen, the 



classification system allows direct translation between specific Emtree keywords (we have 

added the broadest terms as well as their relevant narrower terms) and our classification codes 

on the third level (study_type). The system allows grouping of study types into classes and 

research types (levels 2 and 1), thus allowing us to analyse the connection between tweets and 

the specific study types as well as the broader categories. 

 

Of the entire population of 238,560 records, 162,830 records can be classified using our study 

type classification system. Of these, 36,595 (22.5%) receive at least one tweet within the fixed 

18 months tweet window. Of the remaining 75,730 records without a classification, 16,316 

(21.5%) receive at least one tweet. These data delimitations will be used to control for 

systematic errors in our main dataset (records with classifications). Among those that were 

classified, 55% had only one classification, 26% had two, 12% had three and the remaining 7% 

had four or more classifications. References with n classifications are treated as n observations, 

thus resulting in more than 162,830 observations on either classification level. Some classes in 

our classification system were not observed at all in the dataset. These classes are omitted in 

the results section. 

Statistical methods and indicators 

For each study type classification level we report several statistics for all documents (referred 

to by *A, e.g. NA) as well as the subset that has received at least one tweet (*T). The included 

statistics are number of articles per classification (N), mean tweets per article (µ), the standard 

deviation from the mean (σ), percentage of articles with at least one tweet (NT/NA), and the mean 

normalised tweets (𝜇̂) defined as the ratio between µ for a specific classification and µ for the 

entire population. 

 

As the distributions of tweets for any classification are extremely skewed (see results) similar 

to citations, the adequacy of the mean as an indicator of average activity is debatable (Calver 

& Bradley, 2009). However, while the median might be a methodologically more sound choice, 

the distributions are so extremely skewed that for study type level classification, medians are 

all 0 when all papers are included and either 1 or 2 if only tweeted papers are included. The 

corresponding means range from 0.35 to 1.74 and 2.02 to 5.01, providing considerably more 

information, especially as the scales for the mean are continuous. We therefore use the mean 

for comparisons, with due care and inclusion of standard deviations and percentage of tweeted 

articles to provide further information on differences in means. As we have large sample sizes, 

we expect any major differences in means to be real and not due to chance. However, to test 

this assumption, all classifications are tested pairwise and against the background population 

using the independent sample, unpaired Mann-Whitney test. 

Limitations 

The most obvious error source in this study is the proportion of papers included in the final 

analysis, compared to the overall population of papers published in 2012. Our background 

population of 162,830 classified papers only represents 27.4% of the 593,974 records 

downloaded from Embase. However, it still represents 68.3% of the 238,560 matchable records. 

This is a fairly high number of papers that could be classified, and if it is possible to improve 

the matching algorithms, it should also be possible to increase the total number of classified 

papers comparably. The only systematic error in this regard is the omission of particular 

documents based on lacking or erroneous DOI’s. However, as missing DOI’s are also an issue 

in collecting tweets, this error is not likely to affect the tweet counts with the limitations to 

tweet-collection that currently exist. 

 



To test if there is a systematic error in the number of tweets per paper, with regard to whether 

a paper has been classified with a study type or not, we compare the percentage of papers with 

tweets for classified papers with unclassified papers. For the 162,830 papers with a 

classification, 36,595 (22.5%) received at least one tweet, while the 75,730 unclassified papers 

received tweets on 16,316 (21.5%) papers. These values also corroborate findings by Haustein, 

Costas & Larivière (2015). For the classified papers, mean tweets were 0.67, while the mean 

was 0.71 for the unclassified papers. These differences are not random (p = 2.7e-14, using 

independent two-sample t-test), however, the effect size is also extremely small (Cohen's d = 

0.018). We should therefore not consider the lack of study types as confounders for the number 

of tweets. 

 

While the classification system we have used here was validated by two domain experts, it is 

only one possible system. Other classifications could have been created, in particular with 

regard to the translation from Emtree keywords to our classification system. The choices made 

in this regard will affect the results as presented here. However, when we compare the pairwise 

scores within a research class, we find high consistency between what could be considered 

“similar” research types. The only study type which varies greatly from the other study types 

in their class is the non-systematic review. This is meaningful, as non-systematic reviews are 

regarded by medical researchers as much less evidential as their systematic counterparts.  

Results 

We analysed the classified papers on the three levels present in our classification system: 

research type, research class and study type. In Tables 2 to 4 we report summary statistics for 

the three levels, for all papers as well as limited to tweeted papers to determine differences 

between the share of tweeted papers as well as intensity of (re)use. Results are visualized in 

Figure 1. In Figures 2 to 4 we provide the results of the pairwise comparison to determine the 

statistical significance of differences between study types including binary and continuous 

statistical significance as well as Cohen’s d to estimate effect size. 

Summary statistics 

As can be seen from Tables 2 to 4, there are large differences in the mean tweets per 

classification, regardless of classification level, although the largest differences are observable 

in the study types. The differences are clear from the means (μA and μT), but even more obvious 

when regarding the relative means (𝜇̂𝐴 and 𝜇̂𝑇). This is also where we find the largest standard 

deviations, likely due to the smaller N per classification. Meta-analyses and systematic reviews 

receive considerably more tweets than other study types, which makes the synthesizing research 

type stand out as well. Overall, a generally increasing interest of the Twitter community can be 

observed from basic (A) over clinical (B) and epidemiological (C) to synthesizing research (D) 

papers. Larger variations per research type can be observed for clinical research, where clinical 

trials are much more tweeted than other study types. In fact, case studies (B2.1) have the lowest 

mean number of tweets per paper (μA), which also reflects in the low mean of observational 

clinical research (B2) on the research class level. Epidemiological research also performs above 

average of the entire sample, while basic research (A) consequently performs below, although 

with somewhat higher scores for genetic engineering (A2.4) than the papers classified as ex 

vivo (A2.1), in vivo (A2.2) and in vitro (A2.3) studies. 

 
  



Table 2. Summary statistics for research type. 

Research type NA μA σA NT NT/NA μT σT 𝝁̂𝑨 𝝁̂𝑻 

A. Basic research 130,171 0.434 1.491 25,992 0.200 2.172 2.712 0.642 0.743 

B. Clinical research 70,262 0.766 2.699 16,623 0.237 3.238 4.773 1.133 1.108 

C. Epidemiological research 43,733 0.963 3.201 12,132 0.277 3.472 5.313 1.425 1.188 

D. Synthesising research 38,558 1.005 3.223 10,641 0.276 3.640 5.295 1.486 1.245 

 

Table 3. Summary statistics for research class. 

Research class NA μA σA NT NT/NA μT σT 𝝁̂𝑨 𝝁̂𝑻 

A2. Applied basic research 130,171 0.434 1.491 25,992 0.200 2.172 2.712 0.642 0.743 

B1. Experimental clinical research 28,343 1.219 3.495 8,949 0.316 3.860 5.337 1.803 1.321 

B2. Observational clinical research 41,919 0.460 1.928 7,674 0.183 2.511 3.894 0.680 0.859 

C2. Observational epidemiological 

research 

43,733 0.963 3.201 12,132 0.277 3.472 5.313 1.425 1.188 

D1. Meta-analyses 1,883 1.742 4.488 655 0.348 5.009 6.448 2.577 1.714 

D2. Reviews 36,675 0.967 3.139 9,986 0.272 3.550 5.199 1.430 1.215 

 

Table 4. Summary statistics for study type. 

Study type NA μA σA NT NT/NA μT σT 𝝁̂𝑨 𝝁̂𝑻 

A2.1. Ex vivo study 1,061 0.425 1.285 223 0.210 2.022 2.155 0.629 0.692 

A2.2. In vivo study 52,127 0.437 1.435 10,676 0.205 2.135 2.536 0.647 0.731 

A2.3. In vitro study 75,287 0.427 1.519 14,699 0.195 2.190 2.821 0.632 0.749 

A2.4. Genetic engineering 1,696 0.606 1.951 394 0.232 2.607 3.345 0.896 0.892 

B1.1. Clinical trial 28,343 1.219 3.495 8,949 0.316 3.860 5.337 1.803 1.321 

B2.1. Case study 21,788 0.348 1.847 3,204 0.147 2.367 4.292 0.515 0.810 

B2.2. Prognostic study 6,618 0.525 1.842 1,407 0.213 2.469 3.341 0.776 0.845 

B2.3. Diagnostic study 13,513 0.608 2.081 3,063 0.227 2.682 3.680 0.899 0.917 

C2.1. Case control study 2,428 0.975 3.547 664 0.273 3.566 6.065 1.443 1.220 

C2.2. Cohort study 34,822 0.943 3.163 9,585 0.275 3.424 5.276 1.394 1.171 

C2.3. Cross sectional study 4,891 1.106 3.300 1,440 0.294 3.756 5.201 1.636 1.285 

C2.5. Monitoring 1,592 0.956 3.163 443 0.278 3.436 5.242 1.414 1.175 

D1.1. Meta-analysis 1,883 1.742 4.488 655 0.348 5.009 6.448 2.577 1.714 

D2.1. Review 32,962 0.885 2.909 8,694 0.264 3.354 4.878 1.309 1.147 

D2.2. Systematic review 3,713 1.695 4.653 1,292 0.348 4.871 6.839 2.507 1.666 

 

The distributions of tweets per classification are shown in Figure 1, illustrating the highly 

skewed nature of these distributions, but also the large differences between some categories. 

The results shown in these boxplots are directly comparable to the summary statistics, and the 

same classifications stand out as being particularly often tweeted. 

 

From previous research we know that meta-analyses, systematic reviews and clinical trials are 

also the most highly cited study types (Andersen & Schneider, 2011). However, whether there 

is a connection between the citedness and tweetedness of medical study types is not obvious 

from the present data, and will require further research. 

 



 

Figure 1. Notched boxplots showing tweet distributions for A) Research type, B) Research class 

and C) Study type. 

 

Pairwise comparison 

In order to analyse the magnitude of differences in classifications further, pairwise comparisons 

were made on each level. The independent two-sample Mann-Whitney test was used to test 

whether differences in sample means were due to random effects, and Cohen’s d was used to 

estimate the effect size of varying means. There is of course a connection between the p-values 

of the Mann-Whitney tests and Cohen’s d, to the extent that non-significant differences will 

also have very small effect sizes, as our sample sizes are quite large. In Figures 2 to 4 these 

pairwise comparisons are plotted as heatmaps, in which the diagonal and lower half have been 

omitted. The statistical significance of differences in mean are plotted as both binary maps (p 

below or above 0.05) and as continuous values. On the research type level, basic research stands 

out the most from the other types, with a lower mean of tweets per paper. For research classes, 

meta-analyses stand out with very large effect sizes, but overall the effect sizes are somewhat 

larger on this level than the broader research types. On the study type level, meta-analyses and 



systematic reviews stand out, but also clinical trials and epidemiological study types have fairly 

large effect sizes, compared to other study types. 

 

 

 

Figure 2. Heatmaps of pairwise comparisons showing A) binary statistical significance, B) 

continuous statistical significance and C) Cohen’s d as effect size estimate. All figures are 

grouped on the research type level. 

 

 

Figure 3. Heatmaps of pairwise comparisons grouped on the research class level. See figure 2 for 

legend. 

 

 

Figure 4. Heatmaps of pairwise comparisons grouped on the study type level. See figure 2 for 

legend. 

 

 



Discussion and Outlook 

We have analysed the frequency of tweets for medical research papers, distinguished by their 

specific study type. Our hypothesis was that some study types would be more frequently 

tweeted, because they were interesting to a wider audience (e.g., patients and other laymen) 

than other types. It has not been possible to identify literature on which types of research are 

actually more useful to laymen, or even which types are most often used. We therefore assume 

that research which is close to clinical practise and may contribute to changes in treatments 

would be more interesting to patients, as they might see a specific benefit to themselves. Based 

on findings by Haustein, Costas and Larivière (2015) that briefer and condensed document 

types received more tweets than research articles, we also assumed that synthesising research 

papers would be more popular on Twitter than basic research. 

 

On the broadest classification level, the results fit well with this assumption, as basic research 

stands out as the least frequently tweeted research type on average. Basic medical research is 

also furthest removed from the actual treatment of diseases—so much that some physicians 

consider it irrelevant to their clinical practise (Andersen, 2013)—which makes them less 

interesting for the general public of medical laymen and patients active on Twitter. When fine-

tuning the analysis to study types, meta-analyses and systematic reviews stand out particularly, 

followed by clinical trials and epidemiologic study types. This corresponds with typical 

evidence hierarchies and reflects similar patterns found for citations (Andersen & Schneider, 

2011; Kjaergard & Gluud, 2002; Patsopoulos et al., 2005). While this might indicate a 

relationship between tweets and citations, other studies on a broader level have found this is not 

the case (Costas et al., 2014; Haustein et al., submitted; Haustein, Larivière, et al., 2014; Zahedi 

et al., 2014). Other explanations may be that physicians are more likely to tweet about high-

evidence studies or that these are also the same types of studies which are most interesting to 

patients. The latter appears obvious, as high-evidence studies are also more likely to be included 

in clinical practice guidelines and thus have a greater potential for changing practice. Moreover, 

results indicating the uptake of social media to be lower among health researchers (Rowlands 

et al., 2011), while the frequency of tweets per paper in this area is high (Haustein, Peters, et 

al., 2014), provide some evidence, that the large effect size found for these study types cannot 

be explained purely by large Twitter-activity from medical researchers. Patients, patient groups 

and laymen interested in research or other factors may thus play an important role in this 

observation. 

 

While factors such as entertaining topics may play a role (Neylon, 2014) when looking at the 

the top per mille most frequently tweeted papers, it is unlikely that all 1,883 meta-analyses, 

3,713 systematic reviews and 28,343 clinical trials should have a higher tweet count than other 

study types due to entertainment value, especially as these are also the most highly regarded 

study types by the researchers as measured through citations. The mean may of course be 

affected by single high-scoring studies, however, as can be seen from Figure 1, it is the entire 

distribution rather than merely the mean which is increased for these study types. In fact, the 

maximum tweets per study type is 46 for meta-analyses and 59 for systematic reviews, while it 

is 65 for two of the basic research study types and 62 for clinical trials. The lowest maximum 

tweet frequency of a study type is 25 (an in vivo study) and the highest is 67 (a cohort study). 

It can thus be concluded that medical study types are one of the factors determining popularity 

of scientific papers on Twitter but they are certainly not the only ones. Apart from factors 

explored by previous studies and known also from the citation context—such as discipline, 

publication age, number of authors etc.—Twitter-specific effects should also be investigated. 

This includes the effect of the number of followers and affordance use as well as the extent to 



which scientific papers receive tweets due to author and journal self-promotion as well as 

automated Twitter accounts (Haustein, Bowman, et al., 2015). 
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